Search results for "width [Lambda(1405)]"
showing 10 items of 330 documents
First coincidences in pre-clinical Compton camera prototype for medical imaging
2003
Abstract Compton collimated imaging may improve the detection of gamma rays emitted by radioisotopes used in single photon emission computed tomography (SPECT). We present a crude prototype consisting of a single 500 μm thick, 256 pad silicon detector with pad size of 1.4×1.4 mm 2 , combined with a 15×15×1 cm 3 NaI scintillator crystal coupled to a set of 20 photo multipliers. Emphasis is placed on the performance of the silicon detector and the associated read-out electronics, which has so far proved to be the most challenging part of the set-up. Results were obtained using the VATAGP3, 128 channel low-noise self-triggering ASIC as the silicon detector's front-end. The noise distribution (…
A Broad Iron Line in the Chandra High Energy Transmission Grating Spectrum of 4U 1705-44
2005
We present the results of a Chandra 30 ks observation of the low-mass X-ray binary and atoll source 4U 1705-44. Here we concentrate on the study of discrete features in the energy spectrum at energies below ~3 keV, as well as on the iron Kalpha line, using the High Energy Transmission Grating Spectrometer on board the Chandra satellite. Below 3 keV, three narrow emission lines are found at 1.47, 2.0, and 2.6 keV. The 1.47 and 2.6 keV lines are probably identified with Lyalpha emission from Mg XII and S XVI, respectively. The identification of the feature at ~2.0 keV is uncertain because of the presence of an instrumental feature at the same energy. The iron Kalpha line at ~6.5 keV is found …
A Method Based on Amplitude Probability Density Representation for Sounding High Frequency Noise in Ionospheric Channels
2021
High Frequency (HF) communications efficiency require a precise characterization of the ionospheric channel’s noise. We present a rapid and accurate method to sound the HF ionospheric channels that enables tracing of the time-availability of the channel based on imposed electric field strength thresholds. The method makes use of the amplitude probability density implemented in a real-time spectrum analyzer. Sounding of 3, 10 and 20 kHz bandwidth channels in the 4.8 – 8.8 MHz range is exemplified and specific observations are presented.
High Resolution Spectroscopy ofBΛ12by Electroproduction
2007
An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed \lam{12}{B} spectrum shows for the first time identifiable strength in the core-excited region between the ground-state {\it s}-wave $\Lambda$ peak and the 11 MeV {\it p}-wave $\Lambda$ peak.
Pressure tuning of light-induced superconductivity in K3C60
2017
Optical excitation at terahertz frequencies has emerged as an effective means to manipulate complex solids dynamically. In the molecular solid K3C60, coherent excitation of intramolecular vibrations was shown to transform the high temperature metal into a non-equilibrium state with the optical conductivity of a superconductor. Here we tune this effect with hydrostatic pressure, and we find it to disappear around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth is detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase…
Calibration of the NEXT-White detector using 83m Kr decays
2018
The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterr'aneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using 83mKr decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for …
Inverse dispersion engineering in silicon waveguides
2014
We present a numerical tool that searches an optimal cross section geometry of silicon-on-insulator waveguides given a target dispersion profile. The approach is a gradient-based multidimensional method whose efficiency resides on the simultaneous calculation of the propagation constant derivatives with respect to all geometrical parameters of the structure by using the waveguide mode distribution. The algorithm is compatible with regular mode solvers. As an illustrative example, using a silicon slot hybrid waveguide with 4 independent degrees of freedom, our approach finds ultra-flattened (either normal or anomalous) dispersion over 350 nm bandwidth in less than 10 iterations.
Development of the wide field imager for Athena
2015
The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 arcmin x 40 arcmin together with excellent count-rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 6 keV will be <= 150 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec of…
X-ray spectroscopy and dosimetry with a portable CdTe device.
2007
Abstract X-ray spectra and dosimetry information are very important for quality assurance (QA) and quality control (QC) in medical diagnostic X-ray systems. An accurate knowledge of the diagnostic X-ray spectra would improve the patient dose optimization, without compromising image information. In this work, we performed direct diagnostic X-ray spectra measurements with a portable device, based on a CdTe solid-state detector. The portable device is able to directly measure X-ray spectra at high photon fluence rates, as typical of clinical radiography. We investigated on the spectral performances of the system in the mammographic energy range (up to ∼40 keV). Good system response to monoener…
Characterization of Al-Schottky CdTe detectors
2011
In the last decades, great efforts are being devoted to the development of CdTe detectors for high resolution X-ray and gamma ray spectroscopy. Recently, new rectifying contacts based on aluminum (Al) are very appealing in the development of CdTe detectors with low leakage currents and anode pixellization. In this work, we report on preliminary results of electrical and spectroscopic investigations on Schottky CdTe diode detectors (4.1 × 4.1 × 0.75 and 4.1 × 4.1 × 2 mm3) with Au/Ti/Al/CdTe/Pt electrode configuration. The detectors are characterized by very low leakage currents even at room temperature (26 pA at 25 °C under a bias voltage of −100 V for the 2 mm thick detector). Polarization …